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Abstract 

The present article  reports on active control and  parameter  updating techniques for 
thermal models based on  the network approach. Emphasis is  placed on  applications 
where radiation plays a dominant role. Examples of such applications are  the  thermal 
design and modeling of spacecrafts and space-based  science instruments. Active ther- 
mal control of a system  aims to approximate a desired temperature  distribution  or  to 
minimize a suitably defined temperature-dependent functional. Similarly, parameter 
updating aims to  update  the values of certain  parameters of the thermal model so that 
the  output approximates a distribution  obtained  through direct measurements. Both 
problems are formulated as nonlinear least-squares optimization problems and a gen- 
eral framework  is  developed  for their study.  Certain theoretical questions associated 
with these problems, such as existence of solutions, are examined. The proposed opti- 
mization strategies  are explained in detail  and  their efficiency  is demonstrated  through 
a series of numerical tests. 

1. Introduction 

Thermal  modeling  and  analysis is a critical  component of many  engineering  systems. The 
various  numerical  techniques  that  have  been  developed over the years  for  this  purpose  can 
be  divided  in  two  main  categories;  finite-element  and finite-difference techniques.  They  are 
both derived  from  discretizations of the  underlying  heat-transfer  equation.  Among  them, 
one of the  most  popular  techniques  is  the  thermal  network  (or  lumped-parameter)  approach. 
This  approach  is  derived  from a particular finite-difference discretization of the governing 
equation.  According  to  this  method,  the  system is partitioned  to  isothermal  nodes  with 
pointwise  properties that  can exchange  heat  either by conduction  or  radiation. The  main 
advantages of the  thermal network  approach  are flexibility and  straightforward  implementa- 
tion of components  with  complicated  geometry. 

The present work  is  concerned  with  two  particular  aspects of thermal  modeling,  active 
control  and  parameter  updating  on  network  models.  The  importance of these two aspects  has 
increased  in the recent  years due  to high  precision and/or  stability  requirements of modern 
applications. The objective of active  control is to achieve a desired  temperature profile via 
addition  or  subtraction of heat.  On  the  other  hand,  the objective of model  updating is 
to  update  the values of' various  parameters of the  thermal  model so that  the  numerically 
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computed  temperature profiles match  actual  test  data; i e . ,  it  aims  to  improve  the fidelity 
of’ the  model. 

The first part of this  paer  deals  with  certain  theoretical  results,  such  as  existence of 
solutions  to  the  problems of interest  with  and  without  constraints,  and  smoothness of the 
solution  paths.  Thermal network properties  are  exploited  to  derive  these  results.  In  the 
second part of the  article,  the  proposed  algorithms  are  described  in  detail,  and  their efficiency 
is demonstrated  through  tests  on large-scale  spacecraft  models that  have  been  used  in  ongoing 
NASA projects. 

I t  is worth  mentioning that  during  the course of this  study a computational  framework  has 
been  developed for the numerical  treatment of the problems of interest.  Particular effort  was 
devoted to make  this  framework  suitable for integrated  modeling.  This is a methodology 
where multidisciplinary  models  are developed for the design and  analysis of engineering 
systems.  Typical  examples of systems  with high demand for integrated  modeling  include 
spacecrafts  and  other  aerospace  applications. 

Integrated  modeling is  emerging as an indispensable  tool  in  modern  engineering  practice 
because i t  simplifies  significantly the  analysis of very complicated  systems.  Furthermore,  it 
allows the  study of various  internal  and  external  factors,  and  their  impact  on  the  system of 
interest, even during  the  early design stages.  In  many  projects,  accurate  thermal  analysis is 
considered a critical  component of this  methodology.  Although  modeling  tools  from  areas 
such as  structural  mechanics  and  automated  control have  been  successfully integrated  into 
this  process,  the  thermal  analysis  discipline  has been integrated in less extent. 

2. Description of the  thermal network model 

A  thermal  network is  defined by a set of nodes that  are connected to each  other  via  linear 
or quartic  conductances,  and is  analogous to electrical  networks,  Dusinberre [l], Birkhoff & 
Kellogg [2]. In  principle,  a  thermal network  model  arises  from a finite-difference discretization 
of‘ the  steady-state,  heat-transfer  equation, 

V . ( k V T )  = f ,  

where k is the  thermal  conductivity, T is the  temperature,  and f is the  heat  load.  In  many 
occasions,  however, the network approach is adopted to  construct  models of complex  systems 
in which a node is  merely  an  isothermal  component  and is not derived from  discretization 
of equation (1). 

In general, a thermal network  model  consists of N internal  nodes  and n boundary  nodes. 
The  temperature  distribution on the  boundary is assumed to be  known and given. The 
finite-difference discretization of (1) reduces to  the following set of N nonlinear  algebraic 
equations, 

N+n N +n oz + Cij(T’ - T,) + 1 &j(T’ - q4) = 0 ,  i = 1,.  . . , N .  
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* In  the  above  equations, Qi are  the  heat  loads of the  system, while d ; j  and &j are  the 
conduction  and  radiation coefficients of the  system, respectively. 

The  conduction coefficients are given by Fourier's  law, 

L 

where k is the  thermal  conductivity of the  material  (it  can  be  either  constant  or  temperature 
dependent), A is the cross-sectional area of heat flow, and L is the  length  between  nodes i 
and j .  Convection  conductors  are  computed  from the expression 

where h is the convective heat  transfer coefficient and A is the surface  area  in  contact  with 
the fluid. On  the  other  hand,  the  radiation coefficients are given by 

where o is the  Stephan-Boltzmann  constant, A is the  area  that  corresponds  to  node i, and 
E is the emissivity  between  nodes i and j .  

The  system (2) can  be  written as a matrix  equation  after  the following substitutions. 
First,  let T = [TI,  . . . , T N ] ~  and D ( T )  = [Tf, . . . , T$IT. Further, define the N x N matrices 
C and R as 

and 

Finally,  let Q = [Ql, . . . , QNlT be the forcing  vector of the  system (2), arising  from  the 
combination of the  heat  loads Qi, and  the  energy  exchange  through  the  boundary  nodes.  In 
other  words, 

with 

N+n N+n 

j=N+1 j = N + l  
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After  making  these  substitutions,  the  thermal network equation (2) is written in the  more 
compact  form 

F ( T )  Q + C T +  RD(T)  = 0 .  (10) 

Methods,  and  their  theoretical  foundations, for solving  general systems of nonlinear  equations 
are  described by Rheinboldt, [3] Algorithms  developed  specifically for the  thermal  network 
model  (10)  have  been  proposed,  among  others, by Milman & Petrick [4], Krishnaprakas [5], 
e. t. c. 

3. Formulation of the control  and  parameter  updating  problems 

This  section is  devoted to  the description  and  formulation of the  active  control  and 
parameter  updating  problems.  The following definitions  are necessary for the discussion 
that follows. Let I R N  be  the  real,  N-dimensional  linear  space of column  vectors x = 
(x1,. . . , x N ) ~ .  The coordinate-wise  partial  ordering  on EN implies that  if x ,  y E RN, then 
x 2 y if and  only if xi 2 yi for all i = 1, . . . , N. The I,-norm, 1x1 = max{ ( x i (  : i = 
1, .  . . , N}, in I R N  will also  be used. Further,  let lRy = {xclRN : x 2 0). Finally, in the 
sequel, it will be  assumed  that  both  linear  and  radiation  conductances of the  system  are 
constant. 

Suppose that  there  are m 5 iV nodes in the  system  (10) whose temperatures have to  be 
controlled. For simplicity  assume  that  these  are  the first m nodes of the  system  and  denote 
by T, E nZ? their  temperature vector. Also, consider a  target  temperature profile To E IRY 
and a least-square  type  objective  function w associated  with T,, 

(11) 

In the above equationE is an m x m constant,  positive definite matrix.  The  purpose 
of thermal  control is to achieve a distribution T, such that w attains a minimum.  The 
control  action is  provided by the thermal-load  vector Q E IR",  assigned to  the m nodes of 
interest.  Therefore,  the  active  control  problem is formulated  as  a  nonlinear,  least-squares 
minimization  problem  with  constraints  with  respect  to  the  objective  function w as follows. 

subject  to 2(m + 1) constraints: 

m 

i= I 
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where bk 5 Q M I N  and Q~\/IAx 5 b y .  These  constraints  express  practical  limitations 
in the available power that  can be produced by the  heaters or  coolers of the  system. 

In  the  parameter  updating  problem  the goal is to modify the values of certain physical 
parameters of the network  model so that  the numerically  computed  temperature  distribution 
at  ‘m 5 lli nodes of interest,  denoted by T,, is as close as possible to a target  profile To. 
In other  words,  the  solution for the first m equations of the  system (10) must  be as close 
as  possible to To. The  parameters  that have to be estimated  are  usually  the  conductivities 
IC of the  linear  conduction coefficients, equation (3) ,  and  the emissivities E of the  radiation 
coefficients, equation (5). The emissivities, in particular,  are very sensitive to  various  factors, 
such  as  roughness of the  radiative  surfaces,  ambient  temperature  and  others, whose effect 
is difficult to  be  measured  with precision. The  target profile To consists of experimental  or 
measured  test  data. 

Assume that  there  are PI parameters of interest,  conductivities  and  emissivities. Given 
the  dimensions of the  matrices C and R, the  maximum possible value of M is 2N2.  These 
matrices, however, are  usually  sparse.  Furthermore,  the  parameters of interest  are  material 
properties, which means that each parameter is  associated to a whole cluster of coefficients. 
Therefore,  in  practice, ki is much  smaller  than 2 N 2 .  

Denote by R E E l M  the  set of parameters  (conductivities  and/or  emissivities) that  have 
to be  estimated.  Then,  the  parameter  updating  problem is formulated as a constrained, 
least-square  optimization  problem, 

subject  to  the following 2 M  constraints, 

These  constraints  express  certain physical limitations  on  the values of the  parameters of 
interest.  One  such  obvious  constraint is that  these  parameters have to be  strictly  positive, 
that is s2 > 0. Other  restrictions  might  hold,  too. For example,  the  emissivities E must 
be  strictly  positive  but  smaller  than 1. The above formulation of parameter  updating as an 
optimization  problem was previously  considered by Narayana et al., 161, who  employed the 
simplex  method for its  solution. 

3. Solvability of the control  and  parameter  updating  problems 

In this  section,  some  results  pertaining  to  the  solvability of the  optimization  problems . 

described  above  are  presented. Besides their  theoretical  interest,  these  results  provide useful 
insight about  the  accuracy  and  robustness of the  numerical  procedures that may be employed 
for the  solution of the  problems  under  consideration. 

Certain  important  properties of thermal networks play the key role for the  derivation 
of these  results. For example,  the  conduction  matrices, C and R of such  networks,  hence 



. their  sum,  are by construction  diagonally  dominant  with  negative values in  the  diagonal. A 
matrix U = ( u i j )  is diagonally  dominant if C i f j  I , u i j J  5 IuiiI. When  strict  inequality  holds 
for all i ,  then  the  matrix is said to be  strictly  diagonally  dominant. 

Furthermore, in thermal networks each node can  exchange  energy  with  any  other  node 
through a sequence of nodes  connected by a combination of conductors  and/or  radiators. 
This  implies that  the  directed  graph of the  matrix C + R is strongly  connected, i.e., C + R 
is irreducible,  Varga [7]. Also, in network  models a t  least  one  internal  node is connected 
to a boundary  node  with  nonzero  interchange  factor.  This  means that C + R has a strict 
diagonal  dominance in the corresponding row. In  this  case, C + R is said to  be irreducibly 
dominant. 

Finally,  another  important  property of the  system (10) that arises  directly  from  the 
structure of C + R  is the coercivity of F(T)  for fixed Q; see [4], Lemma 2.1. The coercivity 
property  implies that  if {T,} is a sequence  with  non-negative  components and IT,[ + 00, 
then IF(T,)I + 00. It is a manifestation of the  fact  that  the energy  balance  can  not  be 
satisfied for arbitrary  large  temperatures. 

The  theorem  that  establishes  existence  and  uniqueness of solution to   the general  system 
(10) can  be  found  in [4]. It is  presented below, without  proof, for completion  purposes. 

Theorem 1. Suppose that C and R are symmetric, non-positive  matrices  with C + R 
irreducibly dominant.  Then, if Q is nonzero with Q 2 0 ,  the system (10) has a unique 
solution T* with T* > 0. (Milman & Petrick, [4]). 

The requirement that  C + R be  irreducibly  dominant is essential for the existence of 
solutions of the  system (10). In  particular,  the  invertibility of the  Jacobian of the  system, 

8F 
dT 
- = (C + RD'(T))  , (16) 

where D'(T)  = [4T;,. . . , 4T;lT, is a direct consequence of this  requirement. 
The following  two lemmas  are necessary for the  derivation of the  main  results of this 

section.  The  first  lemma is a generalization of the  theorem above  for a particular  class of 
networks that consist of subsystems that are  not  necessarily  connected to each other. 

Lemma 1. Suppose that C and R are symmetric, non-positive  matrices  with C + R 
diagonally dominant and reducible. If all the diagonal submatrices of the  normal form of 
C + R are connected to  a boundary node, then the system (10) has a unique  solution T* > 0, 
for every Q 2 0. 

Proof. It is  known,  Varga [7], that for every  reducible n x n matrix A,  there is an n x n 
permutation  matrix P such that 

PAPT = 

0 0 . 
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where  each square  submatrix Bjj,  1 5 j 5 r < N ,  is  irreducible. The  matrix PAPT 
is called the  normal  form of A. Note that C and R are  both  assumed  to  be  symmetric, 
therefore,  their  sum is also symmetric.  This  implies  that  the  normal  form of C + R is a 
block-diagonal  matrix, 

with every diagonal block Bjj, 1 5 j 5 T ,  being  irreducible and diagonally  dominant. If for 
every Bjj there is at  least  one  node that is connected to a boundary  node or has a heat  load 
applied to  it,  then  all  the  matrices Bjj, 1 j 5 T ,  are  irreducibly  dominant.  Consequently, 
Theorem 1 can  be  applied  to each of the  subsystems of the  large  system (lo). / / /  

This  lemma  implies  that  Theorem 1 holds for thermal  networks which can  be  partitioned 
to  subsystems  that  are  not  connected  to each other,  provided that each of these  subsys- 
tems  experiences  some  kind of energy  exchange with  its  environment.  In  other  words,  this 
condition  requires  that  none of the  subsystems is thermally  isolated. 

The second  lemma that is required is the following. 

Lemma 2. Any  principal  submatrix 0 of a symmetric,  irreducibly  dominant  matrix U ,  
is either  irreducibly  dominant  or  its  normal form  is  block-diagonal  with irreducibly  dominant 
blocks. 

Proof. U is  obviously symmetric,  and  diagonally  dominant. If it is irreducible,  then 
the  lemma  holds. If it is not,  then  it  can  be  shown, by following the  same  argument  as 
in Lemma 1, that  the  normal  form of U is block-diagonal  and all the  diagonal blocks are 
symmetric,  diagonally  dominant  and  irreducible.  It  remains  to show that each  diagonal 
block is irreducibly  dominant. 

Mor6, 181, has  shown that any  principal  submatrix of an  irreducibly  dominant  matrix is 
invertible.  Therefore, all the  diagonal blocks of the  normal  form 0 are  invertible, which 
implies that  their  determinant is non-zero.  Assume that a  diagonal block of 0 ,  say ii, is not 
irreducibly  dominant.  Since ii is diagonally  dominant,  then ii x [l, . . . , 1IT = 0. This  means 
that  the  determinant of ii is zero, which is impossible  because it  contradicts  the  invertibility 
of ,G./// 

Subsequently.  let  the  system (10) be  written in the  form 

where T = [T, TBlT, and Ca,, R,, are m x m  principal  submatrices of C and R, respectively. 
C,, and  are also  principal  submatrices of C and R , of dimension (n - m) x (n - m). 
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. Finally,  since C and R are  symmetric,  then C,, = C& and RB, = R&. In the  sequel,  the 
following abbreviated  form of equation  (19) will also be used, 

where 

Fii(T,) = -CiiT, - RiiD(Ti) , i = a,& (22) 
Fij(Tj) = -CijTj - R,jD(T,) - Qi , i , j  = a,p ,  i # j .  (23) 

The following theorem is  one of the two main  results of this  section. It establishes 
controllability of' the  system  (19).  Controllability implies that  the  system (20) can  attain  any 
desired  temperature  distribution T ,  provided that  the  appropriate  heat  load Q is applied to 
it. For steady-stare  problems like the one  examined  in  the  present  work,  the  controllability 
property is  equivalent to  solvability of the unconstrained minimization  problem (12). 

Theorem 2. Suppose that C and R are symmetric, non-positive,  matrices and C + R 
is irreducibly dominant.  Then,  for every T, E Em with T, > 0,  the subsystem (20) has a 
unique  solution Q E E" which is independent of Tp. 

Proof. Consider  the  subsystem (21) and observe that  both Cp, and Rp, consist of off- 
diagonal  elements of C and R, respectively. Therefore,  all  their  elements  are  non-negative. 
Since T, > 0, it follows that Fpa(Ta) _< 0. On  the  other  hand, C + R is irreducibly 
dominant,  hence  Lemma 2 can be applied to  its  principal  submatrix C,, + R,,. Therefore, 
according to  Lemma 1, the  subsystem (21) has  a  unique  solution, say Tp > 0. This  solution 
is given as a function of T, by 

The  solution (24) can  be  substituted  into  the  subsystem (20), yielding the following  expres- 
sion for Q :  

Q = &(Y(T,) + Fas (FG1 (-Qa(T,))) . (25) 

This  solution  exists for every T, > 0. The uniqueness of Q follows immediately  from 
(20)./ / /  

As far as the inverse mapping is  concerned, it is useful to mention that  the following 
theorem  reduces the  dimensionality of the  system  under  consideration. 

Theorem 3. Suppose that C and R are syrrmetric,  non-positive  matrices and C + R 
is irreducibly dominant.  Then, for every Q E nZT with Q 2 0 ,  the system (20)-(21) can be 
reduced to un  m-dimensional mapping F" : Q + T,, which is difleomorphic on R+m. 

Proof. The  theorem is  based on the  construction of solution  paths for the  subsystem (21) 
through  Lemmas 1 and 2. Solution  paths for the  subsystem (20) are  generated by a simple 
hornotopy  idea,  similar to  the one  employed in [4] for the proof of' Theorem 1. 



Consider an  arbitrary 8" 2 0. According  to Theorem 1, the  system  (20)-(21)  has a 
unique  solution,  say To = [T," T;]*. The  fact  that C + R is irreducibly  dominant,  in 
combination  with  Lemmas 1 and 2, asserts that for every T, > 0 there  exists a unique 
solution Tp > 0 that solves the subsystem (21). This  solution  can  be  written  as 

Since Fp,, Fpp are C" mappings, f "  is  also a C" mapping,  according to  the inverse 
function  theorem.  Substitution of (26)  into  (20),  produces  the following relation 

which holds  as  long  as T, > 0. Obviously it holds  in a neighborhood of T,". Since the 
Jacobian of the  system (20)-(21) and  the  Jacobian of the  subsystem (21) are  both  invertible 
at (T,",Tj), then  from Keller [9], Lemma 4.9, it follows that  the  Jacobian of F is also 
invertible a t  T,". Furthermore,  all  the Fij functions that  appear in (27) are C" mappings, 
hence F also  belongs to  this class.  Therefore, by virtue of the inverse function  theorem, F 
defines a diffeomorphism  onto  an  open  neighborhood of T,". 

Let F-l be  the inverse of F in the  neighborhood of T,O, and for X E [0,1] define the 
function 

It is true  that H(T,", 0) = 0 and  the original  problem is to solve H(T,, 1) = 0. This implies 
that  the  solution  paths of 

can  be  continued  from X = 0 to X = 1. But  the  implicit  function  theorem  asserts that  
equation (28) can  be solved  locally  in a neighborhood of X > 0 to  produce a smooth  solution 
curve. This  curve  can  be  continued  as long as aH/aT, stays  nonsingular.  According to  
the above,  this  happens  as  long as T, > 0. On  the  other  hand,  Theorem 1 requires that  
solutions of (20)-(21)  be  positive for any Q > 0, hence T, remains always  positive. 

Therefore,  the  solution  path of (26) is a one-dimensional  manifold. The solution  curve 
T,(X) is diffeomorphic to  the real  line  since the  Jacobian of F stays  invertible,  and  thereby 
unique  solutions of (26)  exist  in  every (T,, X) neighborhood of the solution. The  path T,(X) 
can  not  be  continued to X = 1 only if the  solution blows up for some X* E [0,1]. But  this 
is impossible  because of the coercivity of the combined system  (20)-(21), [4]. Uniqueness 
of the  solutions T, of (20) follows immediately  from  the  uniqueness of the  solution of the 
combined system./// 

Note that  the  mapping Q = F(T,) is a  smooth  function defined on a compact  subset 
of Em. Therefore,  existence of solutions  to  the  constrained  optimization  problem (12)-(13) 
follows immediately.  Existence of solutions  to  the  parameter  updating  problem (14)-( 15)  can 
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be  established in the  same,  straightforward  manner.  First, observe that  the  constraints (15) 
define a compact  subset of EM.  Then, consider  any initial  estimate of the  parameter  vector 
fl" > 0 from  this  subset. According to  theorem 1, the  system F ( T ;  R) = 0, equation ( lo) ,  
has it unique  solution T o  = [T,O,T,] > 0. The  Jacobian of the  system, BF/BT, is non-zero 
and finite a t  To. By the implicit  function  theorem,  the  system  (10)  can  be solved  locally 
to  produce a smooth  solution curve [T,, Tp] = S(fl) = [So(fl), Sp(R)]  in a neighborhood of 
To.  This  curve  can  be  continued so long as  the dF/dT  remains  invertible. This  happens for 
all T > 0. In  other  words, Sa(R)  defines a smooth  mapping  from a compact  subset of RM 
to a compact  subset of X",  hence there  exists  a  solution to  the problem  (14)-(15). 

5. Implementation of the algorithm 

As mentioned in section 3, both  the  thermal  control  problem,  equations (12)-(13), and  the 
parameter  updating  problem,  equations  (14)-(15),  are  formulated  as  nonlinear  optimization 
problems  with  constraints.  Their  solutions  satisfy  the well-known optimality  conditions of 
Kuhn-Tucker;  see, for example, Bryson & Ho [lo], or  Gill et al. [Ill, 

dW M --&% 3% = 0 ,  i = l ,  . . . ,  m ,  
j=1 

In the above  relations, f j  and uj, j = 1, .  . . , M ,  are  the  constraints,  expressed  in a general 
form by equation (32), and  the  Lagrange  multipliers of the  problem,  respectively. 

Over the  years,  numerous  algorithms have been developed for the  numerical  solutions of 
such  optimization  problems.  The  literature on the  topic is vast; see,  for example, [ll], and 
references therein. Most of these  algorithms  are based  on  some suitable  iterative  procedure 
to identify  points  where  conditions  (30)-(32)  are  satisfied. 

Among  them,  the  Sequential  Quadratic  Programming  method  (SQP),  Han [12], Powell 
[13], is  considered  one of the most effective and  reliable  methods for nonlinear  optimization. 
It  has  been employed for the  particular  problems  under  consideration of the  present  study. 
The  algorithms  that solve the  optimization  programs of interest have  been implemented in 
it MATLAB  code.  The  code is based  on the  built-in  SQP  routine of MATLAB,  [14]. 

The  SQP  method requires  the  computation of the  solution of the  system  (10)  and  its 
Jacobian  during each step of the  iteration  procedure.  In  the  present  study,  this  system 
is solved with  the  algorithm described  in [4]. It is based on a  restricted  stepsize  Newton 
method: [dl. The Newton  iterates  are  evaluated  along descent  direction for IF(T)I2. The 
stepsize of each iteration is determined  via  the line-search algorithm,  [16]. A very powerful 
feature of the  thermal solver is the  analytic  evaluation of' the  Jacobian of the  system  (16). 
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The  elimination of finite-differencing  procedures for the  evaluation of derivatives  accelerates 
the convergence rate of the  algorithm  and offers considerable  computing-time  savings.  The 
algorithrn is implemented  in MATLAB and is part of IMOS  (Integrated  Modeling of Optical 
Systems), a computational  environment  that was developed at JPL, [15]. 

Another issue of the  active  control  problem  that  merits discussion  is that  quite  often  the 
number of the available  heaters,  say q ,  is less than  the  number of nodes, m, that  affect the 
objective  function (11). In  such cases, the  location of the q < m heaters  must  be  selected. 
This  can  be  performed by ranking of the  contribution of the m heaters to  the  performance 
index.  This  ranking  can  be  implemented  via  the following procedure.  First,  the  eigenvalues, 
ei ,  and left  eigenvectors vi, i = 1, . . . , m of the m x m matrix E appearing in (11) are 
determined.  Then,  the  vector V ,  defined as 

m 

v = C e i . v i .  (33) 
i=l 

is computed.  The  elements of V are  subsequently  ranked  according to  their  absolute  values. 
This  ranking gives a measure of the  relative  importance of the m nodes to  the  index w. 
The  top q nodes of the  ranking  determine  the  locations where heaters will be  applied. 

6. Numerical Examples 

The  thermal  control  algorithm  has been applied  to a network  model of the  Next  Gen- 
eration  Space Telescope (NGST), shown in Figure 1. The model  consists of N = 1802 
internal  nodes  and n = 48 boundary nodes. There  are  more  than 5800 linear  conductors 
and  more  than  160,000  radiation  conductors.  It was prepared by the NASA Goddard  and 
NASA hf arshall  space  centers. 

Thermal  analysis is a  particularly essential  issue  in the design of space  telescopes,  be- 
cause of their  sensitivity to  temperature  variations.  The  most  important  heat  load  applied 
on the  telescope is radiation from the  sun  and  the  earth.  The  amount of radiated  heat 
varies considerably  as the telescope rotates  to  aim  at different parts of the sky. Significant 
temperature  variations (a few degrees  Kelvin)  on the  components of the  instrument  are ex- 
perienced,  despite  the  presence of sunshields.  Every  deviation of the  temperature profile 
from the  nominal  configuration  generates  thermal  stresses that cause deformations of the 
surfaces of the  primary  and  secondary  mirrors of the telescope.  In turn, these  deformations 
produce  aberrations  that  may  degrade  the  performance of the  instrument.  The effects of 
thernlal  stresses  can be minimized  with  the  employment of a  suitable  control  strategy. 

The  objectives of the  control  strategy  depend  on  the  information  available  about  the 
instrument.  One  objective, for example, is to  maintain  the  initial  temperature  distribution. 
This  method  does  not  require wavefront sensing. Another possible  objective is to achieve 
optimal  performance of the  instrument  making use of the knowledge of the wavefront. Two 
different objective  functions have been used in the  present  study.  The first  one is the  norm 
of the  temperature  change.  In  other words, the  matrix E of equation (11) is the  identity 
matrix.  This  case is referred to  as termperatwe control. The second  performance  index is the 
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. wavefront error  (WFE)  ofthe telescope. The wavefront error is a measure of the  performance 

Under  the  assumption of the  validity of' linear  theories,  the  deformations < induced by 
of the telescope and is defined below. This case is referred to  as WFE control. 

temperature  changes  on m thermal  nodes  can be written  as 

where 0 is the  matrix of optical  sensitivity to  deformations for the  system.  Then,  the 
wavefront error is defined as 

with E given by 

Since  subtraction of heat  requires expensive and  complicated  instrumentation,  the tele- 
scope  is  assumed to  operate on  a  nominal,  'hot'  position, so that  any  rotation  causes  the 
temperatures  to  drop.  Then,  the desired temperature profile can  be  restored by adding  heat 
to  the  system.  Therefore,  the  constraints of the  problem,  equation (13), become 

rn 

CQi I Q M A X ,  
i=l 

where QMAX is the  maximum available power from the  heaters. In the  thermal model of 
NGST there  are m = 798 internal  nodes  that  are used to model  the  primary  mirror of the 
telescope. It is assumed that  there  are q = 100 available  heaters. 

Initially  the  instrument is at the  'hot'  position.  When  it  rotates,  the  temperature  drops 
by a couple of degrees  Kelvin.  The  induced  thermal  stresses  generate a wavefront error  equal 
to  107.58 wm. The  initial  and final (without  control) profiles are  plotted in Figure 2. The 
first step  ofthe  control  strategy is to  determine  the  location of the  heaters.  This is performed 
according to  the  procedure  described in  section 5 .  

Then,  the  optimal  output of each heater is determined. As mentioned  above, the goal of 
temperature  control is to  apply  heat so that  the final distribution is as close as possible to 
the  initial  (hot)  distribution.  Similarly,  the goal of WFE control is to  apply  heat  to  maintain 
the  error  at  the  initial level. Application of temperature  control  produces a profile that is 
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very  close to the  initial,  ‘hot’,  configuration,  Figure 3. The required  energy output from the 
heaters is  0.11  Watts. The final WFE  after  temperature  control is reduced to 27.621 nm. 
On  the  other,  hand  WFE control  results  to a temperature profile that is very close to  the 
‘cold’  (without-control) profile,  Figure 3. The  required energy output is only  0.007 Watts, 
about  1/30 of the required  energy for temperature  control.  The wavefront error  after  WFE 
control is 27.776 nm, just slightly  higher  than  the  error  after  temperature  control. 

The power output  that is  required  from each heater is presented  in  Figure 4 for both 
control  strategies.  Finally,  gray  plots of the  Optical  Path Difference (OPD) with  and  without 
thermal  control  are  shown  in  Figure  5.  It  can  be observed that  the OPD has been  significantly 
reduced  after  employing  the two  proposed  control strategies. 

As regards  the  parameter  updating  problem,  the  proposed  algorithm  has been applied  to 
SEAWINDS, a microwave radar  that is used to  measure  near-surface wind  speed and  direction. 
The  thermal  model,  shown  in  Figure  6,  consists of 1V = 150 internal  nodes, n = 91  boundary 
nodes, 66 linear  conductors  and 15392 radiators.  The  node vector of interest, T,, consist 
of m = 47  nodes.  The  number of emissivities that  have to  be  estimated is M = 7. These 
emissivities  determine  85  radiators  altogether.  Two different  values of these  emissivities  have 
been  considered, 

i-L?IN = [ 0.2 0.2 0.2 0.2 0.2 0.2 0.2]T,  (40) 

and 

Ro = [ 0.6 0.05 0.35 0.45 0.5 0.35 0.4IT,  

producing two  different temperature profiles, TIN and To. The difference of these two  dis- 
tributions  across  the  nodes of interest is shown in Figure 7. 

The  test  amounts  to specifying To as  the  target profile and  trying  to  compute  the emis- 
sivities that  correspond to  this profile, having 0 1 ~  and TIN as  starting  point.  In  other 
words, it is assumed  t.hat i-L?IN is the  initial  estimate  and  that To is the  target profile, which 
the  model  must  be  able  to  calculate  with  updated  emissivities. 

The  algorithm  takes  about 30 iterations  to converge to  the  solution.  The  value of the 
cost  function at   the end of the  computation is 2 . 10”’. The  maximum difference  between 
TO and  the  temperature profile at the  end of the  computation is only K ,  Figure 8. The 
agreement  between  the  calculated emissivities and Ro is good  up  to  the  5th  significant  digit. 
Similar  tests were performed  with  different  emissivities Ro. In  all  those  tests, the  algorithm 
recovered the desired  parameters  and  temperature  distributions  with very good  accuracy. 

3. Concluding Remarks 

Active  thermal  control  and  thermal-parameter  updating  are two common  tasks that 
engineers  are  confronted  with in aerospace  applications.  The present study was focused  on 
developing  techniques for the numerical  treatment of these  problems with  network-based 
models.  Temperature  control  and  parameter  updating  are  both  formulated as nonlinear, 
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. constrained  optimization  problems.  Numerical  procedures for their  treatment  that  are based 
on  the  Sequential  Quadratic  Programming  (SQP)  method offer important  advantages  such 
as flexibility, robustness  and easy implementation. 

In the  present work, the  SQP  method  has been  employed  in conjunction  with  analytic 
evaluation of the  Jacobian of the governing set of equations, which provides  significant  savings 
on  computing  time.  The  proposed  algorithms have been  tested  to  large-scale  thermal  models 
of space-based  science  instruments,  with  quite  promising  results.  The  algorithms  appear to 
be  accurate  and  capable of achieving satisfactory convergence rate. 
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Figure Captions 

Figure 1: Schematic of the NGST thermal  model  and  initial  temperature  distribution. 

Figure 2: Initial  and final (without  control)  temperature  distributions. 

Figure 3: Difference between initial  and final temperature  distributions  with  and  without 
control. 

Figure 4: Heat  output  from each heater  after  temperature  and wavefront error  control. 

Figure 5: Optical  Path Difference (OPD)  without  control  and  after  control. 

Figure 6: Schematic of the SEAWINDS instrument. 

Figure 7: Actual  and  optimal  temperature  distribution  on  the SEAWINDS instrument. 

Figure 8: Difference  between optimal  and  calculated  distributions  after  application of the 
parameter-updating  algorithm on the SEAWINDS instrument. 
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